因数和倍数的教学反思有哪些_因数和倍数的教学反思
2024-09-23 09:24:49未知 作者:3W范文模板网
(精选5篇)
身为一位优秀的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,快来参考教学反思是怎么写的吧!以下是小编整理的(精选5篇),欢迎阅读,希望大家能够喜欢!
1
开学后上第一节课年级组教研课,挺有压力的。毕竟放了这么久的假,感觉有点不习惯,好象字都写不稳一样。还好,上完课后感觉还可以。
因数和倍数是一堂概念课。老教材是先建立整除的概念,在整除的基础上教学因数与倍数的,而新教材没有提到整除。教学前,我是先让学生进行了预习,开课伊始,就揭示课题,让学生谈自己对因数与倍数的理解。学生结合一个乘法算“3×4= 12”入手,介绍因数与倍数概念,这样有助于更好理解,也能节约很多时间。学生的学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏找出一个数的因数是本课的难点,绝大部分学生都能仿照找12的'因数去找,孩子都能一对一对的找,可遗漏的多,在这里我强调按顺序找,也就是从“1”开始,依次找,这样效果很好。
为了得出因数的特点,我出了“24的因数,36的因数,18的因数”,并认真观察这些因数看有什么发现,由于时间不够,我只要求孩子从因数的个数,最小,最大的因数考虑,没有对质数,合数,公因数进行渗透。找一个数的倍数因为方法比较易于掌握,没有过多的练习,二是激发他们想象一个数的倍数有什么特点。
针对这节课,课后老师们就这堂课认真评析,真诚的说出自己的观点,特别就知识的生长点、教学的重难点展开了讨论,特别是找一个数的因数,应注重方法的指导。由此,我们数学课堂教学应注意一下几点:知识的渗透点、练习发展点、层次切入点、设计巧妙点、教法多样点、语言动听点、管理到位点、应变灵活点。
这几点既是目标也是方向,相信我们在新的一学期,团结协作,勤奋务实,努力朝着目标前进。
2
《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一) 操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
(二)自主探究,意义建构,找倍数和因数
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。
找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的'学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(三)变式拓展,实践应用——促进智能内化
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
3
这个单元课时数比较多,对于学生数感的要求比较高,对于学生观察能力,比较能力,推理能力的培养是个很好的训练。通过一个单元的教学,发现学生在以下知识点的学习和掌握上还存在一些问题:
1、最大公因数和最小公倍数
教学中,我让学生经历了三种方法:法一是先找各数的因数(或倍数),再找两个数的公因数(或公倍数),最后再找最大公因数和最小公倍数;二是介绍短除法;三是对于特殊关系的数(倍数关系或互质数)直接根据规律写结果。根据复习和练习反馈,发现学生对数的感觉比较欠缺,特殊关系的数不容易看出来,且两个概念有时还会出现混淆情况,也就是对因数和倍数的理解不够透彻与深刻。如果学生对找最大公因数和最小公倍数学不扎实,将直接影响到后面的约分和通分。所以我准备在平时每节课都有三到五个训练,并进行专项过关。在应用这个知识解决实际问题时,有少数后进生比较难以理解,需要辅助图形来分析,也需要一个时间的积淀过程。
2、质数合数与奇数偶数
这四个概念按照两个不同的标准分类所得。学生在分类思考时对概念的.理解比较清晰,但混同在一起容易出现概念的交叉,如2既是质数又是偶数,9既是合数又是奇数。
3、235倍数的特征
如果单独让学生去说去判断一个数是不是235的倍数,学生比较清楚,但在灵活应用时就比较迟钝,特别是用短除法寻找公因数时,不能很快的进行反应,数的感觉不佳。
以上是本单元学生在学习过程中的主要障碍,数感的培养需要一个过程,而概念的理解加深还需要平时不断的训练。多给学生一点耐心,再坚持一份恒心,相信学生们会有提高,会有改变。
4
《数学课程标准》倡导“自主——合作——探究”的学习方式,强调学习是一个主动建构的过程。因此,应注重培养学生学习的独立性和自主性,让学生在教师的指导下主动地参与学习,亲历学习过程,从而学会学习。
1、以“理”为基点,将学生带入新知的学习。
概念教学重在“理”。学生理解“因数”、“倍数”概念有个逐步形成的过程,为了促进这一意识建构,我先让学生通过自己已有的认知结构,经过“排列整齐的队形——形成乘法算式——抽象出倍数因数概念——再由乘法或除法算式——深化理解”,使学生在轻松、简约并充满自信中学习新知,在数与形的结合中,深刻体验因数倍数的概念。
2、以“序”为站点,培养学生的思维方式。
概念形成得在“序”。学生对于概念的形成是一个由表及里、由形象到抽象的过程。当学生对概念有了初步认识后,让学生探索如何找一个数的倍数的因数,这既是对概念内涵的深化,也是对概念外延的探索。这时思维和排列上的有序性是教学的关键,也是本节课的深度之一。在教学时,分为两个层次:第一个层次是让学生在已有的知识基础上找12的因数,并在交流中,经历了一个从无序到有序、从把握个别到统揽整体、从思维混沌走向思维清晰的过程。抓住教学的难点“如何找全,并且不重复不遗漏”,让学生自由地说,再引导学生说出想的过程,并加以调整。表面看来仅仅是组合的变换,实质上是思维的提高和方法的优化,并让学生在对比中感受“一对一对”找因数的方法,经历了互相讨论、相互补充、对比优化的过程。第二个层次是在学生已经有了探索一个数因数的方法,具备了一定有序思考的能力之后,启发学生“能像找因数那样有序的'找一个数的倍数”,提高了学生的思维能力。
3、以“思”为落脚点,培养学生发现思考的能力。
概念的生成重在“思”,规律的形成重在“观察”,教师如果能在此恰到好处的“引导”,一定会让学生收获更多,感悟更多。因此设计时,我借助了“找自己学号的因数和倍数”这个活动,在大量的有代表性的例子面前,在学生亲自的尝试中,在有目的的对比观察中,学生的思维被逐步引导到了最深处,知道了一个数的最大因数和最小倍数都是它本身,反过来也是正确的。教师在这里提供了有效的素材,可操作的素材,促使学生对所学的概念进行了有意义的建构,促进和发展了他们的思维。
5
本节课的内容涉及的概念非常多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点,同时学会整理知识的方法更是本节课教学的灵魂。
成功之处:
1、构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2的倍数特征、3的倍数特征、5的倍数的`特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2、教给学生整理知识的方法。在教学中,是授人以鱼不如授人以渔,作为教师莫过于教给学生必备的学习方法。在这节课的整理复习中,课前我让学生把第二单元的关于因数和倍数的概念进行了汇总,涉及的概念有如下几个:因数、倍数、公因数、公倍数、最大公因数、最小公倍数、质数、合数、奇数、偶数、2的倍数特征、3的倍数特征、5的倍数特征,并提出具体的要求:一是观察分析这些概念,哪些概念之间有着密切的联系;二是根据这些概念之间的紧密联系可以分为几类;三是用你自己喜欢的方法表示出来,可以以数学手抄报的形式来呈现。通过课前的设计,我事先搜集了一些有代表性的作品放在课件中,让同学们进行欣赏,相互取长补短,共同学习,共同进步。课堂中在小组讨论交流的过程后,教师与学生共同对本单元的概念进行了整理和总结,并得出知识网络图。
纵观本节课的设计,就是通过学生的联想,回忆前面学过的知识,并在头脑中构建知识之间的相互联系,从而揭示出这个知识网络图就是思维导图。掌握了这种方法,就可以把数学中的每一个单元进行整理,也可以把每一册知识进行整理,还可以把小学数学的知识进行系统的整理,从而让学生体会到思维导图方法的强大之处,学生在感叹这种方法的魅力同时,并把这种方法推广到其它学科,让学生真正掌握知识整理的方法,并在以后的单元知识整理中加以运用。
3、在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握,学生在练习的过程中不仅掌握了知识整理的方法,还深刻地理解了知识的来龙去脉,对每个知识点的概念理解也更加清晰了,起到了复习回顾旧知识的作用。
不足之处:
1、个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明,在这一点上教师还要加以引导。
2、出现个别学生由于第二单元的知识是在开学初学习的,有些知识点已经遗忘,导致出现连最小的偶数是几都不知道了,因此在学完每个单元后要不间断的进行知识的巩固和练习。
3、由于本节课的知识点过于多,练习的时间有些不足,导致基本的练习时间可以保障,但是需要拓展的知识没有更好的呈现出来。
再教设计:
1、抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点,注意引导学生从数学的本质去思考问题,排除数学本质以外的东西,去引发思考,从而形成良好的数学思维品质。
2、还要继续深入挖掘数学的思想、灵魂和方法,用以指导课堂教学,让学生掌握以后学习知识的钥匙,学会开启知识的大门。
6
总的感觉是上好一堂课不容易。当确定好内容后,我和吴艳、顾志成三人各自备课,第二天放学后化了整整一个半小时讨论教案,后又几经修改,但总感到时间来不及。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,学起来比较枯燥。如何使学生通过四十分钟愉快轻松的学习掌握这乏味的概念性内容,如何开头,各部分之间怎样衔接,每一个知识点采取何种形式呈现、展开,重点如何突出,难点如何突破,那几天这许多问题始终盘绕在脑海中,课上下来根据学生的参与情况,掌握程度可以说达到了教学目标。我觉得整个课堂教学注意了以下几点:
1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。
试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用学生乔雨雷、乔风光兄弟间的关系呀,于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的`角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。
2、注意引导学生进行有效的合作学习。
动手实践、自主探索、合作交流是新课程倡导的学习方式,公开课不管上的什么内容,不管有没有必要往往都要叫学生讨论,看起来热热闹闹,其实有多少学生真正参与了讨论。往往是一组中的优等生把答案说出,其他学生洗耳恭听。当3、2、5的倍数写出来后,我问:“整体观察这几个数的倍数,你认为一个数的倍数有什么特点?”首先问题有讨论的价值与必要性,其次当问题提出后我先让学生独立思考,看到学生陆续举手时,再组织学生讨论交流,完善自己的想法。(其实这是我一贯的做法,必须在每个学生独立思考的基础上进行合作学习。)
3、内容环环相扣、过度自然流畅。
从生活中的相互依存关系迁移到数学中的倍数因数,从而揭示课题,引出谁是谁的倍数,谁是谁的因数,到找一个数的倍数或因数,归纳找的方法。整个教学过程环环紧扣、一气呵成,通达顺畅。
4、练习设计由易到难,由浅入深,既巩固了新知,又发展了思维。
“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。让学生判断自己的学号数是哪些数的倍数,老师手里拿了2、3、5几张数字卡片,老师出示卡片,如果学生的学号数是老师出示卡片的倍数就可以站起来。最后留下了学号是1、7、11、13、17、19、23、29、31、37、41、43、47的学生,让学生想办法如果他们也要站起来,老师出示的卡片上应是几?学生面对问题积极思考,享受了数学思维的快乐。
疑问:一开始的摆12个小正方形拼成长方形,得出三个积是12的乘法算式,我想这里的操作可否省去?一方面用去时间较多,对教学内容关系不大,如果说是培养操作能力也不是在这个时候。另一方面这堂课练习时间比较少,挤出的时间可用于练习。
我想如果我们每堂课都能精心设计的话,对学生对我们教师都会有很大的提高。
7
因数和倍数是苏教版五年级下册第三单元的内容。这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而教材是通过用12个小正方形拼长方形并写乘法算式来引入因数和倍数。我在教学时做了一些下的改动,例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。因此,我要求不用12个正方形拼,而是在脑子里“想像拼”,不能想象的就在本子上“画拼”,“拼”好后,我也要求只用一个乘法算式表示你的拼法,这样不仅节省了不少时间,更主要的是我觉得这样的操作活动,虽然看起来不热闹,但学生的'学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏,有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快可找出12的因数,接着再提问:你是怎么看出来的?根据一个乘法算式可以得到12的几个因数?在学生回答之后,我接着请同学们用刚才的方法自己找一找36的因数有哪些。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。虽然这样的教学设计,看起来学生的主动探索过程好像削弱了好多,但根据试上这课时的情况看,这样的设计比直接让学生自主探索36的因数有哪些学习效果要好一些。直接探索36的因数有哪些,放得太开,学生无从下手,暴露出了许多问题,有的不知道该如何找因数,有的没有找全,而学生在教师的引导下,发现了找一个数因数的方法后接着去找36的因数,那么他所关注的是如何有序地找出一个数的因数,这样的思考更有针对性,目标也更明确,对知识的掌握也能做得更好。
8
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:
第一种是分为两类:
一类是商是整数,另一类是商是小数;
第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:
一是必须在整数除法中,
二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
法院法警演讲稿
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的'因数,谁是谁的倍数。
对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1、练习设计容量少了一些,导致课堂有剩余时间。
2、对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
9
通过今天的学习,你有什么收获?
课后作业 :课后自已或与同学合作制作一个含有因数和倍数知识的转盘。
教后反思:
40分钟的时间一闪而过,轻松愉悦的课堂气氛,让学生的学习情绪空前高涨,学生的学习热情,学习过程中数学思维的提升,都在这短短的时间内让我感觉无尽的惊喜。
课堂导入,亲切,有效,让学生先在脑海中留下“关系”这种印象,学生通过自己阅读明白谁是谁的因数,谁是谁的倍数,然后通过试一试、练习、特别是(8是倍数,4是因数。…… ( ))的辨析,让学生明白:在说倍数(或因数)时,必须说明谁是谁的.倍数(或因数)。不能单独说谁是倍数(或因数)。
因数和倍数不能单独存在。
通过寻找一个数的因数,和一个数的倍数,让学生通过多个实例找到规律。
在教学中由于过分依赖课件,致使有的环节没有深入,没有给学生时间进行
10
《公倍数和公因数》在新教材中改动很大,新教材将数的整除中有关分解质因数、互质数、用短除法求几个数的最大公因数和最小公倍数的教学内容精简掉了,新教材突出了让学生在现实情境中探究认识公倍数和最小公倍数,公因数和最大公因数,突出了运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法,注重让学生在解决问题的过程中,主动探索简洁的方法,进行有条理的思考,加强了数学与现实生活的联系。教学以后与以前的教材相比,主要的体会有以下几点。
一是在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的.含义。例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。学生通过操作活动,感受公倍数和公因数的实际背景,缩短了抽象概念与学生已有知识经验之间的距离,有利于学生运用公倍数、最小公倍数、公因数和最大公因数的知识解决实际问题。
二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在教学中,让学生按要求自主操作,发现用怎样的长方形可以正好铺满一个正方形;用边长几厘米的正方形可以正好铺满一个长方形。在对所发现的不同的结果的过程中,引导学生联系除法算式进行思考,对直观操作活动进行初步的抽象。再把初步发现的结论进行类推,在此基础上,引导学生思考正方形的边长与长方形的长和宽有什么关系,再揭示公倍数和公因数,最小公倍数与最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合等图式,显示公倍数与公因数的意义。让学生经历了概念的形成过程。
三是删掉了一些与学生实际联系不够紧密、对后继学习没有影响的内容后,确实减轻了学生的负担,但是找两个数的最小公倍数和最大公因数时由于采用了列举法,学生得花较多的时间去找,当碰到的两个数都比较大时,不仅花时多,而且还容易出现遗漏或算错的情况。相比之下,用短除法来求两个数的最小公倍数和最大公因数就不会出现这方面的问题,所以我在实际教学中,先根据概念采用一一列举的方法求两个数的最小公倍数和最大公因数,待学生熟悉之后就教学生运用短除法求两个数的最小公倍数和最大公因数,这样的安排效果不错,学生也没感到增加了负担。
11
本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,我还出示了一个除法的.算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。
12
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的.概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
13
一、“倍数和因数”与“倍数和约数”这两种说法一定要分清。
“倍数和因数”与“倍数和约数”这两种说法只是新旧教材的说法不同而已,其实都是表示同一类数。(即因数也是约数)
二、为什么第十教科书上讲“倍数与因数”的时候不提整除。
也许我的头脑还受旧版教材的影响,我认为说到“倍数与因数”必须要谈到整除,因为整除是研究“因数和倍数”的条件,学生在没有这条件学习整除,只要教师的教学方法稍有不慎,学生会很快误入小数也有因数;但是我在实际的教学过程中,也体会到了教材中不提整除的好处。而我的心里却又产生了一个新的疑问,S版教材到底在什么时候于什么数学环境下才提出“整除”这个概念呢?会不会在六年级课改才出现呢?我期待着。
三、教学2、5和3的倍数教师应注重“灵活”。
1、 在教学2和5的倍数时,是用同一种方法找出它们倍数的,学生很容易掌握,也很快就能把2和5的倍数说出,并能准确找出各自的倍数,此时,教师应把学生的思维转到同时是2和5的倍数怎样找?接着引导学生归纳出同时是2和5的倍数的`特征,因此,让学生的知识面进一步加大。
2、教学3的倍数的特征时,教师首先让学生用2和5的倍数的方法去找3的倍数的特征,让学生尝试这种方法是找不到3的倍数的特征,这时,教师应该引导学生对写出的3的倍数,要用另一种方法去归纳、总结3的倍数的特征,运用这一特点,教师可以有意识地写些数(有3的倍数,也有不是3的倍数,而且是较大的数)让学生进行判断,这样可使学生对3的倍数的特征进一步得到巩固;当学生熟练掌握3的倍数的特征时,教师话峰一转,你们能归纳出9的倍数的特征吗?学生在教师这一激发下,他们的求知欲兴趣大增,然后教师启学生运用找3的倍数的方法,去找9的倍数的特征,学生会轻而易举地归纳、总结出9的倍数的特征。通过找9的倍数的特征,既巩固了学生学习3的倍数的特征,还使学生的知识面扩大,达到知识的巩固和迁移的目的。
3、当学生掌握了2、5和3的倍数的特征时,教师这时应引导学生进一步归纳、总结,把这三个特征综合,从而得出同时是2、3和5的倍数的特征。
通过这样的教学,让学生真正感受到“灵活”两字,并且能把知识面向纵横方向发展。
14
北师大版五年级数学上、第三单元第一节《倍数与因数》是一节概念课。关于“倍数和因数”教材中没有写出具体的数学好处,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下两个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅仅能够调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,通过讨论,认为用省略号表示比较恰当,用语文中的'一个标点符号解决了数学问题,自我发现问题自我解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
二、渗透学法,构成学习的技能。
由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我组织学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,能够很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时光,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、学练结合,及时把握学生学情。
在学生通过具体例子初步认识了倍数和因数以后,通过超多的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。
课尾,我设计了四道达标检测练习,将整堂课的资料进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。学生在思维上得到了训练,探究问题、寻求解决问题策略的潜力也会逐步得到提高。
15
《倍数和因数》这一章是人教版五年级下册的内容。由于这一单元概念较多,学生要掌握的知识较多,所以掌握起来较难。我上的这节复习课分以下四部分。
1、先从自然数入手,由自然数的概念让学生总结自然数的个数是无限的,最小的自然数是0,没有最大的自然数。又根据生活实际试着让学生把自然数分成奇数和偶数。点名说出什么数是奇数,什么数是偶数,是根据什么分的',这样有一种水到渠成的感觉。
2、由偶数都是2的倍数,复习2的倍数的特征,5的倍数的特征,3的倍数的特征。学生边复习老师边板书,由于大家共同协作,很快找出一个数的最小倍数是它本身,没有最大的倍数。然后总结同时能被2、3整除的数就是6的倍数,引出倍数和因数的意义。让学生随便说一个算式,说明谁是谁的倍数,谁是谁的因数”,学生列举乘法或除法算式,准确表达倍数与因数的关系,加深了学生对倍数与因数相互依存关系的理解和认识。
3、随便给出一个数找出它的所有因数,得出一个数最小的因数是1,最大的因数是它身。根据因数的个数把自然数分成质数、合数和1。复习什么是质数,什么是合数。最小的质数是几,最小的合数是几。20以内的质数。为什么1既不是质数也不是合数。这是根据什么分类的呢?任意给出一个数判断是质数还是合数,若是合数让学生分解质因数。先说分解质因数的方法,然后点名学生板演,教师巡视。指出错误。
4、带领学生一起做练习,让学生边做边说思路。这节课比较好的地方是条理清晰、内容全面;练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性、趣味性。
不足之处是我缺乏个性化的语言评价激活学生的情感,以后需多努力。
16
《因数和倍数》是人教版小学数学五年级下册的知识点,主要教学因数和倍数的认识,以及找一个数的因数和倍数的方法。《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:鉴于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式ab=c直接引出因数和倍数的概念。
数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
一、教学过程的反思
今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的因数和倍数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识因数和倍数的关系。层层推进,引入教学,留下悬念,充分调动了学生的积极性和求知欲。在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大。
在教学时,先让学生“用12个同样大小的正方形,摆成一个长方形,并用乘法算式把自己的摆法表示出来”,让学生动手操作、合作交流,怎样摆,有哪些不同的摆法?先让学生小组交流、操作后,以其中的一道乘法算式为例,引出因数和倍数的概念。这样的安排,体现了以学生为本,用学生已有的经验和动手操作能力,很好的调动了学生学习的积极性和主动性。一方面让学生乐于接受,是学生在展示自己的想法,老师仅仅是组织者;另一方面培养了学生善于观察和倾听他人的想法的良好学习态度。
对于找一个数的倍数比找一个数的因数的方法要容易些,所以我先教学如何找一个数的倍数,在学生学会了找一个数的倍数的方法基础上,再教学如何找一个数的因数,这样教学便于学生自己探索并总结归纳出找一个数的因数的方法,体现了让学生自主学习。
在处理本节课的难点“找36的因数”时,我原来是放手让学生自己去找的。结果试时很多学生没有头绪,无从下手。时间倒是花去不少,可方法却没有多少可行的。我静下心来寻找原因,找一个的因数是学生以前从未遇到过的问题,自然不知道如何解决。再加上找一个数的因数比找一个数的倍数要难得多,我这样贸然地放手,学生当然不知所措了。后来,在处理找36的因数时,如何做到既不重复又不遗漏地找36的因数?我认为要对学生扶放得当,要有适当地扶,学生才能探索出方法。于是,我让学生回忆刚才的几道乘法算式,然后把找一个数的倍数的方法有效的迁移到找一个数的因数中。果然学生知道了该如何思考后,效果好了很多。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。根据学生的`实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
二、教法的运用实践
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一
接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3×4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的
新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。
17
这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的`终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。
18
《公倍数和公因数》的教学已接近尾声,但练习反馈,部分学生求两个数的最大公因数和最小公倍数错误百出,细细思量,用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……而且去问问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“烦”,“很烦”,“太麻烦了”。
在了解了学生的.感受以后,我又重新通过练习概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
另外,我又结合教材后面的“你知道吗?”,指导了一下用短除法求两个数的最小公倍数和最大公因数的方法。在完成练习时,让学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢。
想来想去,还是真得很怀念旧教材上的“短除法”。
因数和倍数的教学反思19
今天和孩子们一起学习了新的一节课《因数》,对于《因数》来说是孩子们第一册接触的知识,但是对于因数这个词来说,孩子们也并不陌生,因为在乘法算式中已经有了因数的一个初步的了解。所以对于本节课来说自己有如下的感受:
一、初步感知,数形结合让学生形成表象
在教学的时候,我首先通过课本上飞机图的情景图让学生看图列算式,并且用现在自己五年级的思维来用不同的乘法算式来表示,这一环节对于学生列式来说是比较简单的,基本上所有的学生都能够很好的列出算是,然后根据学生列出的算式,引出因数和倍数的意义。在此环节的设计上由于方法的多样性,为不同思维的展现提供了空间,激发了学生的形象思维,而又借助 “形”与“数”的关系,为接下来研究“因数与倍数”概念打下了良好基础,有效地实现了已有知识与新知识之间的联系。更好的分化了难点,让学生很轻松的.接受了知识的形成。
二、自主探究以邻为师
在学生知道了因数和倍数的意义上,接下来出示了让学生自己动手找18的所有的因数。为了能够更好的、全面的找到18的所有因数,让同桌两人互相合作来完成。通过教学发现学生的合作能力很强,能够用数学语言来准确的表述,而且大多数学生在合作的.过程中也能很好的找到、找全18的所有的因数。
三、在练习中体验学习的快乐
在 最后的环节中我设计了不同层次的练习,先让学生说说有关因数和倍数的意义的一些练习题,加深对知识点的理解,主要是让学生明白因数和倍数不是单独存在的, 是相互已存的,必须要说清楚是谁是谁的因数、谁是谁的倍数。通过教学来看学生掌握的还算可以。接着出示了让学生找不同数的因数,在这个环节的设计用了不同 的形式,比如:找朋友,你来说我来做,比一比说最快等形式来帮助学生理解知识,在此过程中学生很感兴趣,激情很好课堂气氛热烈,也让学生在轻松的氛围中体 验到学习的快乐。
不足之处:
在本节课的教学上还是存在很多不足之处,虽然自己也知道新课标提出要以学生为主体,老师只是引导着和合作者,可是在教学过程中许多地方还是不由自主的说得过多,给学生的自主探索空间太少。
如在教学找18的因数这一环节时,由于担心孩子们是第一次接触因数,对于因数的概念不够了解,而犯这样或那样的错误,所以引导的过多讲解的过细,因此给他们自主探究的空间太小了,没能很好的体现学生的主体性。
因数和倍数的教学反思20
一、教材与知识点的对比与区别。
1、对比新版教材知识设置与传统教材的区别。有关数论的这部分知识是传统教学内容但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别1新课标教材不再提“整除”的概念也不再是从除法算式的观察中引入本单元的学习而是反其道而行之通过乘法算式来导入新知。2“约数”一词被“因数”所取代。这样的变化原因何在教师必须要认真研读教材深入了解编者意图才能够正确、灵活驾驭教材。因此我通过学习教参了解到以下信息学生的原有知识基础是在已经能够区分整除与余数除法对整除的含义有比较清楚的认识不出现整除的定义并不会对学生理解其他概念产生任何影响。因此本教材中删去了“整除”的数学化定义。
2、相似概念的对比。1彼“因数”非此“因数”。在同一个乘法算式中两者都是指乘号两边的整数但前者是相对于“积”而言的与“乘数”同义可以是小数。而后者是相对于“倍数”而言的与以前所说的“约数”同义说“X是X的因数”时两者都只能是整数。2“倍数”与“倍”的区别。“倍”的概念比“倍数”要广。我们可以说“1。5是0。3的5倍”但不能说”1。5是0。3的倍数”。我们在求一个数的倍数时运用的方法与“求一个数的几倍是多少”是相同的只是这里的“几倍”都是指整数倍。
二、教法的`运用实践
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围因此对于学生和第一接触的印象是没有什么可以探究和探索的要求而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内与小数无关与分数无关与负数无关虽没学但有小部分学生了解。同时强调——非0——因为0乘任何数得00除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法让学生清晰明确。因此用直接导入法先复习自然数的概念再写出乘法算式3×4=12说明在这个算式中3和4是12的因数12是3和4的倍数。
2、在进行延续性教学中可以让学生探究怎么样找一个数的因数和倍数在板书要讲究一个格式与对称性这样在对学生发现倍数与因数个数的有限与无限的对比再就是发现一个数的因数的最小因数是1最大因数是其本身。